

RTO-MP-IST-041 21 - 1

Building a Trusted Path for Applications Using COTS Components

Hanno Langweg
Norwegian Information Security Laboratory – NISlab1

Department of Computer Science and Media Technology, Gjøvik University College
P.O. Box 191, 2802 Gjøvik

Norway

hanno.langweg@hig.no

ABSTRACT

Client computers are often a weak link in a technical network infrastructure. Increasing the security of
client systems and applications against malicious software attacks increases the security of the network as
a whole.

Our work solves integrity and authenticity of input, confidentiality, integrity and authenticity of output.

We present components to integrate a trusted path into an application to directly communicate with a user
at a personal computer. This allows security sensitive parts of applications to continue operating while
being attacked with malicious software in an event-driven system. Our approach uses widely employed
COTS software – DirectX – and can be varied in design and implementation, hence making it more
difficult to defeat with generic attack tools.

1.0 INTRODUCTION

Client computers are often a weak link in a technical network infrastructure. Confidentiality and integrity
of connections between nodes in a network can be secured employing strong cryptography. However, this
does not help against attacks by malicious software. Trojan horse programs, i.e., programs with additional
hidden, often malicious, functions, are more and more popular forms of attack. These assail the endpoints
of secured transactions. A vulnerable interface is the interaction of an application with the physically
present user.

Examples for a direct user interaction are the creation of electronic signatures, online voting, financial
transaction processing, communication software etc. The concept for this is not new and is called a trusted
path. A trusted path exists between the physically present user and the operating system, e.g., when
invoking the logon process.

In the Clark/Wilson access control model (cf. Clark et al. 1987), integrity is protected by transformation
procedures that can not be bypassed. Applications manipulating data in existing systems could be seen as
these procedures. If they are not able to tell apart another program from a user, untrusted processes could
manipulate data that is assumed to be protected by a special access path.

Current event-driven systems, especially the Microsoft Windows operating system, do provide little to
distinguish between users and other processes. Input can be simulated, output can not be authenticated and
can be captured by other processes.

1 This work was partly completed while the author was working at Department of Computer Science III, University of Bonn,
Germany

Paper presented at the RTO IST Symposium on “Adaptive Defence in Unclassified Networks”,
held in Toulouse, France, 19 - 20 April 2004, and published in RTO-MP-IST-041.

Building a Trusted Path for Applications Using COTS Components

In this paper we deal with integrity and authenticity of input, confidentiality, integrity and authenticity of
output. We use existing COTS (commercial off the shelf) software, originally deployed as an interface for
game developers, to assemble a trusted path. It is offered as a set of components to application developers.

This paper is organized as follows. We discuss previous and related work and give an overview of the
standard Microsoft Windows input and output model. We then present components obtaining input and
output by different means. This is followed by a discussion on retrofitting existing applications with a
trusted path. An examination of the security of our approach concludes the presentation.

It may be important to note that we focus on architectural vulnerabilities of platforms and applications. We
do not cover vulnerabilities that stem from flaws in an implementation.

2.0 PREVIOUS AND RELATED WORK

User interface security has always been an issue. In the Orange Book (1985) a Trusted path was required
to establish a secure communication between the user and the operating system. It is there defined as
follows: "Trusted Path – A mechanism by which a person at a terminal can communicate directly with the
Trusted Computing Base. This mechanism can only be activated by the person or the Trusted Computing
Base and cannot be imitated by untrusted software."

Wiseman et al. (1988) propose a user interface for the SMITE system to prevent Trojan horses from
tampering with an application’s output. Rooker (1993) questions a focus on the operating system. In his
view applications should play a more active role in enforcing security. Operating systems should provide
object-oriented support for trusted user interfaces and security embedded in applications.

In the Microsoft Windows operating system, applications typically receive information about user actions
by way of messages. Since these messages can be sent by malicious applications as well, this turns out to
be a convenient vector of attack.2 It is a vulnerability by design. In Microsoft’s view, all applications
assigned to the same desktop are treated equally. If a program needs an undisturbed interface, it should be
assigned a separate desktop. This approach is pursued by Balfanz (2001). However, managing separate
desktops can be cumbersome for developers. So most of today’s software that interacts with a user sitting
at the machine runs in a single desktop shared by benign and malign programs.

This problem is encountered by local security applications such as virus scanners, personal fire walls etc.
Schmid et al. (2002) point out their dilemma when notifying the user about a security event. The user is
notified about the presence of a possibly malicious application that could hide that notification
instantaneously. Xenitellis (2002a, 2002b) discusses Windows messages in event-driven systems in
general and laments a lack of authentication. He proposes a rigorous filtering of messages that could be
harmful to an application or separating applications from each other, thereby reducing co-operation among
them. The straight-forward alternative, outlined by Spalka et al. (2002), would be to add an authenticated
origin to messages. It would require changes in the decade-old messaging system and is hence unlikely to
be adopted by the manufacturer of the operating system. In the X-Windows system, a radical approach is
pursued, allowing to disable conveyance of all messages placed by the SendEvents function (cf. Bråthen
1998). There may be occasions, like computer-based training, in which remote control of another
application or parts of it is desired. Only a fraction of all applications expose an interface by which they
can be explicitly automated. Consequently, simulating user input is a quick and convenient way for small
helper applications.

Paget (2002) and Howard (2002) remind us that messages can be sent between processes running in
different security contexts. Says Howard: ‘In the Windows user interface, the desktop is the security

2 Cult of the Dead Cow (2003). Back Orifice 2000. http://bo2k.sourceforge.net

21 - 2 RTO-MP-IST-041

Building a Trusted Path for Applications Using COTS Components

boundary, and any application running on the interactive desktop can interact with any window on the
interactive desktop, even if that window is invisible. This is true regardless of the security context of the
application that creates the window and the security context of the application.’

Carlisle et al. (2001) investigate some improvements for dialog-based security. Application output should
be defended against hiding. Actions should be delayed so that a user could interfere when a program is
controlled by simulated input. Scripting and automatic collection of information about the user interface
should be restricted. Langweg (2002) uses the DirectX interface to distinguish between key strokes and
simulated Windows messages. Output is orchestrated by DirectX instead of the co-operative Windows
GDI. Ye et al. (2002) advocate a modified web browser to convey meta-information to the user about
which browser windows can be trusted.

3.0 ARCHITECTURAL OVERVIEW

3.1 Windows Input Model
Microsoft Windows uses an internal messaging model to control Windows applications. Messages are
generated whenever an event occurs. For example, when a user presses a key on the keyboard and releases
it or moves the mouse, a message is generated by the operating system. The message is then placed in the
message queue for the appropriate thread. An application checks its message queue to retrieve messages.3

Figure 1: Input processing on a Windows desktop

The system passes all input for an application to the various windows in the application. Each window has
a function, called a window procedure, that the system calls whenever it has input for the window. The
window procedure processes the input and returns control to the system. All aspects of a window’s
appearance and behaviour depend on the window procedure’s response to these messages.

In the model, it is not possible to distinguish between messages placed in the queue by the operating
system and messages placed by another application. To make it even worse, ordinary programs can
synthesize input by help of the SendInput API function (keybd_event, mouse_event prior to NT4 SP3).
This synthesized input is processed by the operating system into messages for an application. This was
originally intended to assist users in operating an application by different input facilities other than the

3 Microsoft (1998). Microsoft Windows Architecture for Developers Training Kit.

RTO-MP-IST-041 21 - 3

Building a Trusted Path for Applications Using COTS Components

standard keyboard and mouse, e.g., assistive technology for users with disabilities. It is also a convenient
tool for malicious programs.

3.2 DirectX
Microsoft DirectX is a group of technologies designed by Microsoft to make Microsoft Windows-based
computers an ideal platform for running and displaying applications such as games. Built directly into
Windows operating systems, DirectX is an integral part of Windows 98, Windows Me, and Windows
2000/XP.

DirectX gives software developers a consistent set of APIs that provides them with improved access to
hardware. These APIs control what are called “low-level functions,” including graphics memory
management and rendering, and support for input devices such as joysticks, keyboards, and mice. The
low-level functions are grouped into components that make up DirectX: Microsoft Direct3D, Microsoft
DirectDraw, Microsoft DirectInput, to name just a few.4 In this paper we are concerned with DirectInput
and DirectDraw.

DirectInput retrieves information before it is distilled by the operating system to Windows messages.
Hence, input synthesized by placing a forged message in a program’s message queue is ignored.

DirectDraw allows to access the display hardware in exclusive mode, keeping other programs from
distorting the information presented to the user.

In the sketch it is shown how an application actually transfers its output to the screen. Without DirectX it
uses the GDI (Graphical Device Interface) and the DDI (Display Driver Interface). With DirectX, namely
its DirectDraw part, the DDI is bypassed in favour of the HAL (Hardware Abstraction Layer). If there is
no direct hardware support, the HEL (Hardware Emulation Layer) is used instead.5

Figure 2: Output processing on a Windows desktop

4 Microsoft (2000). ‘Microsoft DirectX Overview’. Microsoft Developer Network Library.
5 Microsoft (2001). ‘DirectDraw Architecture, System Integration’. Microsoft Developer Network Library.

21 - 4 RTO-MP-IST-041

Building a Trusted Path for Applications Using COTS Components

4.0 TRUSTED PATH FOR APPLICATIONS

A couple of applications need to communicate directly with the user. This includes situations where it is
eminent to get input from the user being physically present at the machine, or to ensure that the user sees
data undisturbed by other applications.

Examples are creation of electronic signatures, online voting, financial transactions, communication
software etc. The concept for this is the trusted path. A trusted path exists between the user and the
operating system, e.g., when invoking the logon process.

For an implementation of a trusted path for security-aware software we build on Langweg’s (2002) work.
In this approach, DirectX is used to determine whether input was initiated by a device or by a simulated
message. Integrity and authenticity of user input is achieved that way.

4.1 Input Components

Figure 3: Components palette for input and output

We provide components for application developers. They are shown in the component palette above and
comprise two kinds of buttons, two kinds of edit boxes, a memo box, and components for output that will
be discussed in a later section. The components are implemented using Borland Delphi.

Figure 4: Form showing both standard and trusted path components

These components can be used like the standard Windows controls. In the case of input, we have three
different components, an edit control, a memo box, and a button. They offer almost the same functionality
as the original controls. Since they inherit from the original TEdit, TMemo and TButton classes, they can
replace these components in existing projects.

RTO-MP-IST-041 21 - 5

Building a Trusted Path for Applications Using COTS Components

Figure 5: Input processing using DirectX

The new edit control, TDXEdit, does not rely on Windows messages being accurate. It confirms if input
can be verified via the DirectInput interface, originally added for game development.

We have two different implementations. In the first, we observe the message queue for input messages. As
soon as an input message arrives, we check the DirectInput keyboard state. If a key press or release can be
confirmed, we process the input message; otherwise it is discarded. In situations where there is high load
on the system, the user may have to type less fast than usual. This did not present a practical problem in
tests with most users. However, sometimes genuine input was discarded when it should not have been.

In our second implementation, we process input in a separate thread. This thread observes the DirectInput
device either by polling or by a call back function. When input is detected at the DirectInput interface, a
message is composed and posted to the message queue. This message is specified as, e.g.,
WM_DX_KEYDOWN. Its parameters contain an index and a pointer to the input data. The parameters are
encrypted using AES to defend against other processes composing a similar message. In the message
processing loop, the WM_DX_KEYDOWN parameters are decrypted, and the keyboard input data
retrieved from memory. Then a conventional WM_KEYDOWN message is constructed internally and
processed by the default method. All other WM_KEYDOWN messages that arrive directly and not as a
WM_DX_KEYDOWN are discarded because they could have been manipulated. This holds true for
WM_KEYDOWN, WM_KEYUP, WM_CHAR, WM_PASTE. WM_SETTEXT and WM_GETTEXT are
also processed only when they originate from inside the process.

We also have a TEdit variant that works with the API function GetAsyncKeyState instead of DirectInput.
Its implementation is almost identical to the version presented above.

Our TDXMemo component works similar to the TDXEdit but offers multiple lines for user input.

The TDXButton component offers a button that can not be clicked by a simulated message. The
implementation is simpler since only WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, WM_MOUSEMOVE messages have to be observed. We also have two
variants as described above, the first validating messages when they arrive, the second generating
messages based on DirectInput and discarding all others.

AES was chosen with respect to high speed in software. The overhead of encrypting and decrypting the
input messages is remarkably low. On our 850 MHz PIII time spent on message processing increases by
less than two percent in the case of message validation. In the second implementation we observe that
message processing takes almost twice as long as in the unencrypted case.

21 - 6 RTO-MP-IST-041

Building a Trusted Path for Applications Using COTS Components

4.2 SendInput
The problem of simulated Windows messages solved, input can in principle still be fabricated. The
operating system allows processes running in the same desktop to simulate input by the Win32 API
function SendInput.

To prohibit other (possibly malicious) programs to call SendInput and synthesize the user’s key strokes we
can inject control code into running processes. This code resides in a dynamic link library (DLL) which is
activated when USER32.DLL is loaded. Since SendInput is a USER32 function, loading of our DLL is
assured. It is necessary to add our DLL to the key HKEY_LOCAL_MACHINE\Software\

Microsoft\Windows NT\CurrentVersion\Windows\APPInit_DLLs in the Windows
registry.6 This requires administrative privileges during installation.

The DLL modifies the Import Address Table of the supervised program and redirects all calls to
SendInput to its own version of that function. Calls can then be blocked or forwarded to the original
SendInput function when blocking is not required. The same effect could be achieved by employing a
COTS sandbox software for programs running on the computer that monitors and restricts the use of
certain API calls including SendInput.

It may be possible to distinguish users and untrustworthy programs by observing their input behaviour,
e.g., programs simulating input much faster than an ordinary user could type. This rather falls in the field
of biometrics (cf. e.g. Bergadano et al. 2002).

We have found another way to tackle the SendInput problem. We call the first method ‘Fast Hook
Renewal’. Our input components install a system-wide low-level keyboard hook to catch all input before it
is processed by applications. Here we check the LLKHF_INJECTED flag for injected input. If it is set, we
discard that input so that it does not reach our secure components. Since other (and malicious) applications
can employ this method as well to promote their agenda, we renew our hook after a short period, i.e., some
milliseconds, to get to the beginning of the hook chain. This method works quite reliably, albeit not 100%
of the time.

Our second approach is modifying the desktop’s ACL (access control list). It is possible to enable system-
wide hooks for certain accounts only. Hence, ordinary applications could be denied using system-wide
hooks while our protected application could use them. A desktop’s ACL has to be modified before a
(possibly malicious) process is started. So, the canonical point to do this is the creation of the desktop
which is the responsibility of the GINA (Graphical Identification and Authentication) library. This cannot
be circumvented by an application. However, it requires replacing either the standard GINA of the
operating system or that of a third party vendor, e.g., with a smart card or biometric authentication.
Currently, creating a chain of GINA libraries does not add to overall system stability.

Eliminating faked messages 100% of the time and discarding injected SendInput data most of the time is
still an advantage. It can be done easily be changing some components and leaving the rest of a program
untouched. Messages allow an attacker to exactly specify which parts of the user interface should receive
input. Achieving the same with SendInput is harder to do. In lack of an appropriate metric, it is not known
how much harder exactly, though. Attacks by SendInput can also be countered by introducing delays in
the input process (cf. Carlisle et al. 2001). Attacks are not prevented then, but made detectable by the user
(or by the application if it suspects the user typing so fast that input can only come from a malicious
program). Changing the user interface slightly from time to time also makes it harder for an attacker to use
SendInput as a tool.

6 Microsoft (2000) ‘Working with the APPInit_DLLs Registry Value’. Microsoft Knowledge Base Q197571.

RTO-MP-IST-041 21 - 7

Building a Trusted Path for Applications Using COTS Components

21 - 8 RTO-MP-IST-041

4.3 Output Components
We provide components for application developers. They are shown in the component palette in fig. 3 and
comprise a couple of input components and three output components, one of which is shown as a picture.
The components are implemented using Borland Delphi.

Figure 6: Output processing using DirectX

We have two goals as regards output components. On the one hand, integrity and authenticity of the output
has to be ensured. On the other, we want to combine a secure display with the user being able to respond
along a trusted path.

Hence, we provide three components. Two display the content of a window on a secure surface. The third
offers a standardized limited functionality for user input in combination with a secure surface to draw on.

The first output component, DXFormShow, is used in conjunction with a form’s show method. We
activate DirectDraw, acquire the screen exclusively, clear the screen, paint it black and draw the form’s
content on the centre of the screen. As shown in previous work, this ensures a display that can not be
manipulated by other processes. In addition, it provides confidentiality of the output. An application
developer needs to drop the component on a form and replace calls to a form’s show method. The rest of
the application’s code, including the code used to draw the form, can be left unchanged. However, this
only ensures that a form is drawn on a secure surface. If the form contains sophisticated input controls
these can not be used by the user. So, we recommend this component only for displaying, e.g., details of a
financial transaction or data to be signed when no modification is essential.

Figure 7: Component DXEnhancedMessageBox with simple user interface
and application hologram

Our second component used for output, DXMessageBox, is a replacement for the standard Win32 API
function MessageBox. A developer provides a caption and text to display in the message box, and the
buttons that are shown to the user. We then switch to a secure surface as described above and show the
message box. The buttons employed are TDXButtons that we use for trusted input. The user then has a
choice of which button to click to give the application a response to the output.

Building a Trusted Path for Applications Using COTS Components

RTO-MP-IST-041 21 - 9

In a variant of the message box we offer an enhanced message box, DXEnhancedMessageBox. In addition
to displaying text and offering buttons, the box allows one TDXEdit control to be used. The user may
there enter commands securely in text mode.

4.4 Window Personalization
Authenticity of the output is done by window personalization. This concept is described by Tygar et al.
(1996). At installation time the user adopts a picture that is displayed each time our application invokes
the trusted display mode. Other applications do not have access to the picture and the user can thus
determine whether or not to accept the output.

The NTFS file system of Windows NT/2000/XP only allows to specify access rights differentiating users.
We put a service on top that identifies processes that request the secret picture. This service runs under a
separate account. Access to files containing a picture identifying an application is restricted to the account
of the service. Hence, confidentiality and integrity of this picture is protected. We call it an ‘application
hologram’ (e.g., the teddy bear in the example in fig. 7).

The protocol for communicating with our service contains four steps.

• An application opens a named pipe to the service requesting access to the secret graphic. The
request contains a handle of a window of the requesting process.

• The service checks which executable module belongs to the window identified by the handle. If
the executable is not in the service’s white list of benign processes, the protocol stops and an entry
is added to the security log. The check could also involve whether the executable file has been
tampered with, but this lies outside the scope of our tool. If the service decides that the window
belongs to a benign process, it sends a random 32 bit value (a nonce) wrapped in a special
message to the window.

• The receiving window checks whether it requested access to the secret graphic. If it decides to
proceed, it sends the received value to the service via the named pipe opened in the first step.

• The service checks if the received value matches the value sent in the current session. If they
match, the service opens the file containing the application hologram and sends it to the
application via the named pipe.

Figure 8: Communication diagram for retrieving an application hologram

At the end of the protocol run the application hologram has been transferred to the secure application that
will display it on a confidentiality preserving secure surface. Hence, only trusted applications have access
to the graphic, and the user can trust applications that show the graphic.

Building a Trusted Path for Applications Using COTS Components

21 - 10 RTO-MP-IST-041

Using a named pipe ensures that the file is sent only to a benign application that opened the pipe. Sending
a nonce via standard Windows messaging and associating it with the pipe session ensures that only an
application present in the white list can request a hologram. Messages are put in the message queue of the
respective application only.

As a precaution we use modified desktop ACLs as described earlier to disallow global hooks for other
applications. The Win32 API otherwise offers to install a hook to retrieve all messages globally. Even
then, an attack would have to be tailored to this specific protocol.

The same effect could also be achieved by using a file system filter driver identifying requests not only by
user account but also by process.

4.5 Microsoft Windows Interface Changes
In the Microsoft Windows XP successor, code-named Longhorn, changes are anticipated as regards how
applications use the desktop for displaying data. The Direct3D part of DirectX is expected to be used to
render output. From a programmer’s perspective, however, the new desktop composition engine will
replace GDI and GDI+, but the interfaces will be similar. The desktop is still shared among applications.
Hence, there may still be a need to acquire the display in exclusive mode to ensure a trusted output. We
are not aware of changes to the input model.

Longhorn is currently expected to ship by 2005, so even if some problems with trusted output are solved
with the new release, the need for practical solutions exists today. With the components we have presented
here change can be applied to applications easily to heighten security.

NGSCB/Palladium (cf. England et al. 2003), Microsoft’s attempt to add a separate secure kernel to
Windows, also intends to provide a trusted path from an application to a user. However, this requires
programming a new application since NGSCB works with a different application programming interface
compared with today’s Win32 API. In addition, NGSCB is not yet available.

5.0 RETROFITTING EXISTING APPLICATIONS

Today applications that would profit from a trusted path to the user exist. These applications can not be
rewritten completely.

Edit and button controls in security sensitive dialog windows can be replaced by the DirectX-enhanced
controls that we have presented in the preceding section. This replacement can take place at design/build
time when a maintenance update or a new version of the application is produced. Since the controls are
compatible with the standard controls, there is no need to change the source code depending on these input
controls.

Replacing output requires some change to an application’s source code. It may not be desired to switch to
full-screen exclusive mode every time a message box is shown. Hence, only the security sensitive parts of
the application have to be touched where displaying information to the user is important to be trusted.

If every message box can be replaced by our new component, i.e., if there are few, then another approach
can be taken even at run time. A dynamic link library (DLL) could be injected into the process’ address
space. This DLL alters the address table for imported functions. Since our DXMessageBox function has
the same signature as the Win32 API MessageBox function, all it takes is a change of the pointer to the
function. However, changing function pointers from the outside without knowing the source code of the
application may become a stability problem. We therefore favour minor changes in source code during
build time.

Building a Trusted Path for Applications Using COTS Components

RTO-MP-IST-041 21 - 11

We use version 8 of the DirectInput interface and version 7 of the DirectDraw interface. We have not
investigated if it would be possible to revert to earlier versions of DirectX, namely versions 3 or 5. Hence
we do not know whether our components would work with the earlier Windows NT 4 operating systems.

6.0 DISCUSSION OF THE SECURITY OF THE APPROACH

The security of our implementation of a trusted path for an application relies on the integrity of the
operating system and resistance against system-wide global hooks.

DirectX is a part of the Windows 2000/XP operating system. As such, the operating system is responsible
for the integrity of the DirectX modules. In addition, existing integrity protection tools could be used.

One of our implementation variants sends messages using the Windows messaging system. These
messages are encrypted using AES, prohibiting other processes from inserting fabricated messages
undetected in the stream.

To preclude processes from simulating input via the SendInput API, we offer multiple ways. One
approach is to block use of the SendInput function by adding code to another process’ memory and
modifying the import address table. Simulated input can also be detected and dismissed by employing low
level hooks that we use in our fast hook renewal method. Other processes have to be cut off from
installing system-wide hooks. This is either done by fast hook renewal or by modifying the access control
list of the desktop.

A hologram service is used to authenticate and authorize access of applications to a secret picture, called a
hologram. Our protocol for communication with the service authenticates the application by a handle and
a message. Again, system-wide hooks have to be denied other processes. An implementation variant could
obviate a separate service, placing the functionality in a file system filter driver.

As stated earlier, our focus lies on protection against architectural vulnerabilities. If there are flaws owing
to errors in the implementation of the platform, they have to be covered by other means.

Variants in the implementation, which we partly offer, help to increase resistance against generic attack
tools. We offer three variants of our input components’ implementation, and three variants as regards
protection against simulated input, two of which can also be used for the hologram service.

7.0 CONCLUSION

Trojan horse programs, i.e., programs with additional hidden, often malicious, functions, are more and
more popular forms of attack. Applications that execute in an insecure environment should have control
over their communication with the user.

Our work solves integrity and authenticity of input, confidentiality, integrity and authenticity of output.
Confidentiality of user input is not discussed and remains to be scrutinized.

We have in detail explored components for establishing a trusted path for an application in an event-driven
system. These components can be adopted by developers to reinforce existing applications or to build new
security sensitive applications.

We have presented a creative way of exploiting existing COTS components – DirectX – to directly access
input and output devices. Compared with dedicated hardware or operating system replacements our
solution gives tractable and cost-effective means to incorporate better protection into programs on desktop
computers.

Building a Trusted Path for Applications Using COTS Components

21 - 12 RTO-MP-IST-041

Different implementations of the components provide different levels of security and different points of
attack, increasing resistance against generic attack tools. Current malicious software that threatens
integrity of desktop user interaction often relies on weaknesses in the standard messaging system. These
weaknesses are abated by our approach.

Further research should include metrics to measure the added security by employing COTS components
and varying implementations. Probably additional standard user interface components like combo boxes or
tool bars could be implemented using our approach to offer application developers more choices. It
remains to be examined whether components could be built that also work with older versions of the
Windows operating system family, i.e., NT4. It might also be of interest to explore if other application
programming interfaces, e.g., the Qt framework or OpenGL, could be used in the same way as DirectX.

8.0 REFERENCES
[1] Balfanz, D. (2001). Access Control for Ad-hoc Collaboration. PhD thesis, Princeton University.

[2] Bergadano, F., Gunetti, D., and Picardi, C. (2002). ‘User Authentication through Keystroke
Dynamics’. ACM Transactions on Information and System Security 5.4(2002):367-397.

[3] Bråthen, R. (1998). ‘Crash Course in X Windows Security’. GridLock 1(1998):1.
http://www.hackphreak.org/gridlock/issues/issue.1/xwin.html

[4] Carlisle, M.C. and Studer, S.D. (2001). ‘Reinforcing Dialog-Based Security’. Proceedings of the
2001 IEEE Workshop on Information Assurance and Security. Pp. 24-29.

[5] CERT Coordination Center (1999). CERT Advisory CA-99-02-Trojan-Horses.
http://www.cert.org/advisories/CA-1999-02.html

[6] Clark, D.D. and Wilson, D.R. (1987). ‘A Comparison of Commercial and Military Computer
Security Policies’. Proceedings of 1987 IEEE Symposium on Security and Privacy. Pp. 184-194.

[7] Cult of the Dead Cow (2003). Back Orifice 2000. http://bo2k.sourceforge.net

[8] Delphi-Jedi Project (2003). DirectX headers and samples. http://www.delphi-jedi.org

[9] Department of Defense (1985). DoD 5200.28-STD Department of Defense Trusted Computer System
Evaluation Criteria. (‘Orange Book’)

[10] England, P., Lampson, B., Manferdelli, J., Peinado, M., and Willman, B. (2003). ‘A Trusted Open
Platform’. Computer 36.7(2003):55-62.

[11] Howard, M. (2002). Tackling Two Obscure Security Issues.
http://msdn.microsoft.com/library/default.asp?url=/library/ en-us/dncode/html/secure08192002.asp

[12] Langweg, H. (2002). ‘With Gaming Technology towards Secure User Interfaces’. Proceedings of
Annual Computer Security Applications Conference 2002. Pp. 44-50.

[13] Microsoft (1998). Microsoft Windows Architecture for Developers Training Kit.

[14] Microsoft (2003). Microsoft Developer Network Library.

[15] Paget, C. (2002). ‘Exploiting design flaws in the Win32 API for privilege escalation. Or... Shatter
Attacks – How to break Windows’. http://www.google.com/search?q=cache:security.tom-
bom.co.uk/shatter.html

Building a Trusted Path for Applications Using COTS Components

RTO-MP-IST-041 21 - 13

[16] Rooker, T. (1993). ‘Application Level Security Using an Object-Oriented Graphical User Interface’.
Proceedings of the 1992-1993 Workshop on New Security Paradigms. Pp. 105-108.

[17] Schmid, M., Hill, F., and Ghosh, A.K. (2002). ‘Protecting Data from Malicious Software’.
Proceedings of Annual Computer Security Applications Conference 2002. Pp. 199-208.

[18] Spalka, A., Cremers, A.B., and Langweg, H. (2001). ‘The Fairy Tale of »What You See Is What You
Sign«. Trojan Horse Attacks on Software for Digital Signatures’. Proceedings of IFIP Working
Conference on Security and Control of IT in Society-II. Pp. 75-86.

[19] Spalka, A., and Langweg, H. (2002). ‘Notes on Program-Orientated Access Control’. Proceedings of
First International Workshop on Trust and Privacy in Digital Business – TrustBus. Pp. 451-455.

[20] Thurrott, P. (2003). ‘The Road To Windows ’Longhorn’ Part Two’. Paul Thurrott’s SuperSite for
Windows. http://www.winsupersite.com/showcase/ longhorn_preview_2003.asp

[21] Tygar, J.D., and Whitten, A. (1996). ‘WWW Electronic Commerce and Java Trojan Horses’.
Proceedings of the Second USENIX Workshop on Electronic Commerce.

[22] Wiseman, S., Terry, P., Wood, A., and Harrold, C. (1988). ‘The Trusted Path between SMITE and
the User’. Proceedings of 1988 IEEE Symposium on Security and Privacy. Pp. 147-155.

[23] Xenitellis, S. (2002a). ‘Security vulnerabilities in event-driven systems’. Proceedings of IFIP
SEC’2002. Pp. 147-160

[24] Xenitellis, S. (2002b). ‘A New Avenue of Attack: Event-driven System Vulnerabilities’.
Proceedings of European Conference on Information Warfare and Security, MCIL. Pp. 177-185.

[25] Ye, E. and Smith, S. (2002). ‘Trusted Paths for Browsers’. Proceedings of 11th USENIX Security
Symposium. Pp. 263-279.

Building a Trusted Path for Applications Using COTS Components

21 - 14 RTO-MP-IST-041

	Link to presentation:

